
Depth Camera Based Indoor Mobile Robot Localization and Navigation

Joydeep Biswas
The Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213, USA

joydeepb@ri.cmu.edu

Manuela Veloso
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213, USA

mmv@cs.cmu.edu

Abstract— The sheer volume of data generated by depth
cameras provides a challenge to process in real time, in
particular when used for indoor mobile robot localization and
navigation. We introduce the Fast Sampling Plane Filtering
(FSPF) algorithm to reduce the volume of the 3D point cloud
by sampling points from the depth image, and classifying local
grouped sets of points as belonging to planes in 3D (the “plane
filtered” points) or points that do not correspond to planes
within a specified error margin (the “outlier” points). We then
introduce a localization algorithm based on an observation
model that down-projects the plane filtered points on to 2D, and
assigns correspondences for each point to lines in the 2D map.
The full sampled point cloud (consisting of both plane filtered as
well as outlier points) is processed for obstacle avoidance for
autonomous navigation. All our algorithms process only the
depth information, and do not require additional RGB data.
The FSPF, localization and obstacle avoidance algorithms run in
real time at full camera frame rates with low CPU requirements
at more than 1030 frames per second on average. We provide
experimental results demonstrating the effectiveness of our
approach for indoor mobile robot localization and navigation.
We further compare the accuracy and robustness in localization
using depth cameras with FSPF vs. alternative approaches
which simulate laser rangefinder scans from the 3D data.

I. INTRODUCTION

The recent availability of inexpensive depth cameras has
made available dense 3D point clouds, which were previously
only accessible using much more expensive sensors like
time-of-flight cameras or scanning 3D laser rangefinders. We
are interested in using these depth cameras for ground based
indoor mobile robots. We consider mobile robots with limited
onboard computational power, and address two immediate
challenges to using the depth cameras for mobile robot
localization and navigation:

1) Depth cameras typically generate voluminous data that
cannot be processed in its entirety in real time for
localization (e.g., the Microsoft Kinect sensor produces
9.2 million 3D pts/sec, compared to the 6800 2D
pts/sec of the Hokuyo URG-04lx laser rangefinder).

2) Given that we already have existing 2D maps of our
indoor environments, the observed 3D point clouds
should be matched with the 2D maps.

In this paper, we tackle both these challenges. We first
introduce the Fast Sampling Plane Filtering (FSPF) algorithm
that samples the depth image to produce a set of points
corresponding to planes, along with the plane parameters
(normals and offsets). The volume of data to be processed is

Fig. 1. Snapshot of depth image processing: On the left, the complete
3D point cloud is shown in white, the plane filtered 3D points in color
along with plane normals, and the obstacle avoidance margins denoted by
red boxes. On the right, the robot’s pose is shown on the vector map (blue
lines), with the 3D point correspondences shown as red points.

thus significantly reduced, addressing the first challenge with
the additional advantage that non-planar objects in the scene,
which are unlikely to correspond to map features are filtered.
We then address the second challenge by introducing an
observation model in our localization algorithm that matches
the plane filtered points to the lines in the 2D maps, making it
possible to reuse our existing 2D maps. This is in contrast to,
and more effective than (as we shall show) down-projecting
the 3D point cloud and binning it to simulate a conventional
laser rangefinder. Our combined approach interestingly uses
only the depth image and does not require the RGB images.
The sampled points generated are also used to perform
obstacle avoidance for navigation of the robot. Fig. 1 shows
a snapshot of the key processed results after plane filtering,
localization, and computing the obstacle avoidance margins.

Since our application is based on a ground robot, 6 degree
of freedom (6D) localization is not required since the height
of the sensor on the robot and its tilt and roll angles are fixed.
At the same time, observations in 3D made by the depth cam-
era has the potential to provide more useful information than
planar laser rangefinders which sense objects only on a single
2D plane. Furthermore, typical indoor environments have an
abundance of large planar features which are discernible in
the depth images.

II. RELATED WORK

Approaches that operate on raw 3D point clouds for plane
(and general geometric shape) detection [1], [2] are ill-
suited to running in real-time due to their high computational
requirements, and because they ignore the fact that depth
cameras make observations in “2.5D”: the depth values are
observed on a (virtual) 2D image plane originating from a
single point. Region growing [3] exploits the local correlation
in the depth image and attempts to assign planes to every 3D
point. The Fast Sampling Plane Filtering algorithm, which
we introduce in this paper, in contrast samples points at
random and does not attempt to fit planes to every point,
and instead uses local RANSAC [4].

There has been considerable work in 2D localization and
mapping ([5] provides an overview of the recent advances in
SLAM), and in using localization on 2D maps to generate 3D
models using additional scans [6]. Specific to the problem
of building 3D maps with 6 degrees of freedom (6D)
localization is 6D SLAM [7], [8] that builds maps using
3D points in space, but these methods do not reason about
the geometric primitives that the 3D points approximate.

An alternative approach to mapping using the raw 3D
points is to map using planar features extracted from the 3D
point cloud [9], [10]. In particular, 3D Plane SLAM [11] is
a 6D SLAM algorithm that uses observed 3D point clouds
to construct maps with 3D planes. The plane detection in
their work relies on region growing [3] for plane extraction,
whereas our approach uses sampling of the depth image. In
addition, our observation model projects the observed planes
onto the existing 2D vector map used for 2D laser rangefinder
sensors.

More recently, techniques for 6D localization and mapping
using RGB-D cameras have been explored. One such ap-
proach constructs surface element based dense 3D maps [12]
which are simultaneously used for localizing in 3D using
iterative closest point (ICP) as well as visual feature (SIFT)
matching. While such approaches generate visually appealing
dense 3D maps, they include in the maps features resulting
from objects which are not likely to persist over time, like
objects placed on tables, and the locations of movable chairs
and tables.

In summary, the main contributions of this paper in
relation to other work are:

• The Fast Sampling Plane Filtering algorithm that sam-
ples the depth image to produce a set of points corre-
sponding to planes (Section III)

• A localization algorithm that uses this filtered point
cloud to localize on a 2D vector map (Section IV)

• An obstacle avoidance algorithm that enables safe au-
tonomous navigation (Section V)

• Experimental results (Section VI) showing the accuracy
and reliability of FSPF based localization compared
to the approach of localizing using simulated laser
rangefinder scans, and long run autonomous trials of
the robot using the depth camera alone.

III. FAST SAMPLING PLANE FILTERING

Depth cameras provide, for every pixel, color and depth
values. This depth information, along with the camera in-
trinsics (horizontal field of view fh, vertical field of view
fv , image width w and height h in pixels) can be used to
reconstruct a 3D point cloud. Let the depth image of size
w × h pixels provided by the camera be I , where I(i, j) is
the depth of a pixel at location d = (i, j). The corresponding
3D point p = (px, py, pz) is reconstructed using the depth
value I(d) as

px = I(d)

(
j

w − 1
− 0.5

)
tan

(
fh
2

)
, (1)

py = I(d)

(
i

h− 1
− 0.5

)
tan

(
fv
2

)
, (2)

pz = I(d). (3)

With limited computational resources, most algorithms
(e.g. localization, mapping etc.) cannot process the full 3D
point cloud at full camera frame rates in real time. The naı̈ve
solution would therefore be to sub-sample the 3D point cloud
for example, by dropping (say) one out of three points, or
sampling randomly. Although this reduces the number of 3D
points being processed by the algorithms, it ends up discard-
ing information about the scene. An alternative solution is
to convert the 3D point cloud into a more compact, feature -
based representation, like planes in 3D. However, computing
optimal planes to fit the point cloud for every observed 3D
point would be extremely CPU-intensive and sensitive to
occlusions by obstacles which exist in real scenes. The Fast
Sampling Plane Filtering (FSPF) algorithm combines both
ideas: it samples random neighborhoods in the depth image,
and in each neighborhood, it performs a RANSAC based
plane fitting on the 3D points. Thus, it reduces the volume
of the 3D point cloud, it extracts geometric features in the
form of planes in 3D, and it is robust to outliers since it uses
RANSAC within the neighborhood.

FSPF takes the depth image I as its input, and cre-
ates a list P of n 3D points, a list R of correspond-
ing plane normals, and a list O of outlier points that
do not correspond to any planes. Algorithm 1 outlines
the plane filtering procedure. It uses the helper subroutine
[numInliers, P̂ , R̂] ← RANSAC(d0, w

′, h′, l, ε), which per-
forms the classical RANSAC algorithm over the window of
size w′ × h′ around location d0 in the depth image, and
returns inlier points and normals P̂ and R̂ respectively, as
well as the number of inlier points found. The configuration
parameters required by FSPF are listed in Table I.

FSPF proceeds by first sampling three locations d0,d1,d2

from the depth image (lines 9-11). The first location d0 is
selected randomly from anywhere in the image, and d1 and
d2 are selected randomly within a neighborhood of size η
around d0. The 3D coordinates for the corresponding points
p0, p1, p2 are then computed using eq. 1-3. A search window
of width w′ and height h′ is computed based on the mean
depth (z-coordinate) of the points p0, p1, p2 (lines 14-16),
and the minimum expected size S of the planes in the world.

Algorithm 1 Fast Sampling Plane Filtering
1: procedure PLANEFILTERING(I)
2: P ← {} . Plane filtered points
3: R← {} . Normals to planes
4: O ← {} . Outlier points
5: n← 0 . Number of plane filtered points
6: k ← 0 . Number of neighborhoods sampled
7: while n < nmax ∧ k < kmax do
8: k ← k + 1
9: d0 ← (rand(0, h− 1), rand(0, w − 1))

10: d1 ← d0 + (rand(−η, η), rand(−η, η))
11: d2 ← d0 + (rand(−η, η), rand(−η, η))
12: Reconstruct p0, p1, p2 from d0,d1,d2

13: r = (p1−p0)×(p2−p0)
||(p1−p0)×(p2−p0)|| . Compute plane normal

14: z̄ = p0z+p1z+p2z
3

15: w′ = wS
z̄ tan(fh)

16: h′ = hSz̄ tan(fv)

17: [numInliers, P̂ , R̂]← RANSAC(d0, w
′, h′, l, ε)

18: if numInliers > αinl then
19: Add P̂ to P
20: Add R̂ to R
21: numPoints ← numPoints + numInliers
22: else
23: Add P̂ to O
24: end if
25: end while
26: return P,R,O
27: end procedure

Local RANSAC is then performed in the search window.
If more than αinl inlier points are produced as a result of
running RANSAC in the search window, then all the inlier
points are added to the list P , and the associated normals
to the list R. This algorithm is run a maximum of mmax

times to generate a list of maximum nmax 3D points and
their corresponding plane normals. Fig. 2 shows an example
scene with the plane filtered points and their corresponding
plane normals.

IV. LOCALIZATION

For the task of localization, the plane filtered point cloud
P and the corresponding plane normal estimates R need to
be related to the 2D map. The 2D map representation which
we use is a “vector” map: it represents the environment as
a set of line segments (corresponding to the obstacles in

Parameter Value Description
nmax 2000 Maximum total number of filtered points
kmax 20000 Maximum number of neighborhoods to sample
l 80 Number of local samples
η 60 Neighborhood for global samples (in pixels)
S 0.5m Plane size in world space for local samples
ε 0.02m Maximum plane offset error for inliers
αin 0.8 Minimum inlier fraction to accept local sample

TABLE I
CONFIGURATION PARAMETERS FOR FSPF

Fig. 2. Fast Sampling Plane Filtering in a scene with a cluttered desktop.
The complete 3D point cloud is shown on the left, the plane filtered points
and the corresponding normals on the right. The table clutter is rejected by
FSPF while preserving the large planar elements like the monitors, the table
surface, the walls and the floor.

the environment), as opposed to the more commonly used
occupancy grid [13] based maps. The observation model
therefore has to compute the line segments likely to be
observed by the robot given its current pose and the map.
This is done by an analytic ray cast step. We therefore
introduce next the representation of the 2D vector map and
the algorithm for analytic ray casting using the 2D vector
map.

A. Vector Map Representation and Analytic Ray Casting

The map M used by our localization algorithm is a set
of s line segments li corresponding to all the walls in the
environment: M = {li}i=1:s. Such a representation may be
acquired by mapping (e.g. [14]) or (as in our case) taken
from the blueprints of the building.

Given this map, to compute the observation likelihoods
based on observed planes, the first step is to estimate which
lines on the map are likely to be observed (the “scene lines”),
given the pose estimate of the robot. This ray casting step is
analytically computed using the vector map representation.

The procedure to analytically generate a ray cast at
location x given the map M is outlined in Algorithm 2.
The returned result is the scene lines L: a list of non-
intersecting, non-occluded line segments visible by the robot
from the location x. This algorithm calls the helper procedure
TrimOcclusion(x, l1, l2, L) that accepts a location x, two
lines l1 and l2 and a list of lines L. TrimOcclusion trims
line l1 based on the occlusions due to the line l2 as seen
from the location x. The list L contains lines that yet need
to be tested for occlusions by l2. There are in general 4 types
of arrangements of l1 and l2, as shown in Fig. 3:

1) l1 is not occluded by l2. In this case, l1 is unchanged.
2) l1 is completely occluded by l2. l1 is trimmed to zero

length by TrimOcclusion.
3) l1 is partially occluded by l2. l1 is first trimmed to a

non occluded length, and if a second disconnected non
occluded section of l1 exists, it is added to L.

4) l1 intersects with l2. Again, l1 is first trimmed to an
non occluded length, and if a second disconnected non
occluded section of l1 exists, it is added to L.

l2

l2

l2

l2

l1

l1

l1
l1

Case 1
Case 2

Case 3
Case 4

x

Fig. 3. Line occlusion cases. Line l1 is being tested for occlusion by line
l2 from location x. The occluded parts of l1 are shown in green, and the
visible parts in red. The visible ranges are bounded by the angles demarcated
by the blue dashed lines.

Algorithm 2 Analytic Ray Cast Algorithm
1: procedure ANALYTICRAYCAST(M,x)
2: L̂←M
3: L← {}
4: for li ∈ L̂ do
5: for lj ∈ L do
6: TrimOcclusion(x, li, lj , L̂)
7: end for
8: if ||li|| > 0 then . li is partly non occluded
9: for lj ∈ L do

10: TrimOcclusion(x, lj , lj , L̂)
11: end for
12: L← L ∪ {li}
13: end if
14: end for
15: return L
16: end procedure

The analytic ray casting algorithm (Algorithm 2) proceeds
as follows: A list L̂ of all possible lines is made from the map
M . Every line li ∈ L̂ is first trimmed based on occlusions
by lines in the existing scene list L (lines 5-7). If at least
part of l1 is left non occluded, then the existing lines in L̂
are trimmed based on occlusions by li (lines 9-11) and li is
then added to the scene list L. The result is a list of non
occluded, non-intersecting scene lines in L. Fig. 4 shows an
example scene list on the real map.

Thus, given the robot pose, the set of line segments likely
to be observed by the robot is computed. Based on this list
of line segments, the actual observation of the plane filtered
point cloud P is related to the map using the projected 3D
point cloud model, which we introduce next.

B. Projected 3D Point Cloud Observation Model

Since the map on which the robot is localizing is in 2D,
the 3D filtered point cloud P and the corresponding plane
normals R are first projected onto 2D to generate a 2D point
cloud P ′ along with the corresponding normalized normals

Fig. 4. Analytically rendered scene list. The lines in the final scene list
L are shown in red, the original, untrimmed corresponding lines in green,
and all other lines on the map in blue.

R′. Points that correspond to ground plane detections are
rejected at this step. Let the pose of the robot x be given
by x = {x1, x2} where x1 is the 2D location of the
robot, and x2 its orientation angle. The observable scene
lines list L is computed using an analytic ray cast. The
observation likelihood p(y|x) (where the observation y is
the 2D projected point cloud P ′) is computed as follows:

1) For every point pi in P ′, line li (li ∈ L) is found such
that the ray in the direction of pi− x1 and originating
from x1 intersects li.

2) Points for which no such line li can be found are
discarded.

3) Points pi for which the corresponding normal estimates
ri differ from the normal to the line li by a value
greater than a threshold θmax are discarded.

4) The perpendicular distance di of pi from the (extended)
line li is computed.

5) The total (non-normalized) observation likelihood
p(y|x) is then given by:

p(y|x) =

n∏
i=1

exp

[
− d2

i

2fσ2

]
(4)

Here, σ is the standard deviation of a single distance
measurement, and f : f > 1 is a discounting factor to
discount for the correlation between rays. The observation
likelihoods thus computed are used for localization using
the Corrective Gradient Refinement (CGR) [15] algorithm,
which we review in brief.

C. Corrective Gradient Refinement for Localization

The belief of the robot’s location is represented as a
set of weighted samples or “particles”, as in Monte Carlo
Localization (MCL)[16]: Bel(xt) =

{
xit, w

i
t

}
i=1:m

. The
CGR algorithm iteratively updates the past belief Bel(xt−1)
using observation yt and control input ut−1 as follows:

1) Samples of the belief Bel(xt−1) are evolved through
the motion model, p(xt|xt−1, ut−1) to generate a first
stage proposal distribution q0.

2) Samples of q0 are “refined” in r iterations (which
produce intermediate distributions qi, i ∈ [1, r − i])

using the gradients δ
δxp(yt|x) of the observation model

p(yt|x).
3) Samples of the last generation proposal distribution qr

and the first stage proposal distribution q0 are sampled
using an acceptance test to generate the final proposal
distribution q.

4) Samples xit of the final proposal distribution q are
weighted by corresponding importance weights wit,
and resampled with replacement to generate Bel(xt).

Therefore, for CGR we need to compute both the obser-
vation likelihood, as well as its gradients. The observation
likelihood is computed using Eq. 4, and the corresponding
gradients are therefore given by,

δ

δx
p(y|x) = −p(y|x)

fσ2

n∑
i=1

[
di
δdi
δx

]
. (5)

The term δdi
δx in this equation has two terms, corresponding

to the translation component δdi
δx1

and the rotational compo-
nent δdiδx2

. These terms are computed by rigid body translation
and rotation of the point cloud P respectively.

The observation likelihoods and their gradients thus com-
puted are used to update the localization using CGR.

V. NAVIGATION

For the robot to navigate autonomously, it needs to be
able to successfully avoid obstacles in its environment. This
is done by computing open path lengths available to the
robot for different angular directions. Obstacle checks are
performed using the 3D points from the sets P and O. Given
the robot radius r and the desired direction of travel θd, the
open path length d(θ) as a function of the direction of travel
θ, and hence the chosen obstacle avoidance direction θ∗ are
calculated as:

Pθ =
{
p : p ∈ P ∪O ∧ ||p− p · θ̂|| < r

}
(6)

d(θ) = min
p∈Pθ

(
max(0, ||p · θ̂|| − r)

)
(7)

θ∗ = arg max
θ

(d(θ) cos(θ − θd)) (8)

Here, θ̂ is a unit vector in the direction of the angle θ,
and the origin of the coordinate system is coincident with the
robot’s center. Fig. 5 shows an example scene with two tables
and four chairs that are detected by the depth camera. Despite
randomly sampling (with a maximum of 2000 points) from
the depth image, all the obstacles are correctly detected,
including the table edges. The computed open path lengths
from the robot location are shown by red boxes.

VI. EXPERIMENTAL RESULTS

We evaluated the performance of our depth camera based
localization and navigation algorithms over two sets of ex-
periments. The first set of experiments compare our approach
using FSPF CGR localization to three other approaches that
use the Kinect for localization by simulating laser rangefinder
scans from the Kinect sensor. The second set of long run

(a)

(b)

Fig. 5. Obstacle avoidance: The raw 3D point cloud (a) and (b) the sampled
points (shown in color), along with the open path limits (red boxes). The
robot location is marked by the axes.

trials test the effectiveness of our complete localization and
navigation system over a long period of time.

Our experiments were performed on our custom built
omnidirectional indoor mobile robot, equipped with the
Microsoft Kinect sensor. The Kinect sensor provides depth
images of size 640 × 480 pixels at 30Hz. To compare the
accuracy in localization of the different approaches using
the Kinect, we also used a Hokuyo URG-04LX 2D laser
rangefinder scanner as a reference. The autonomous long run
trials were run using the Kinect alone for localization and
navigation. All trials were run single threaded, on a single
core of an Intel Core i7 950 processor.

A. Comparison of FSPF to Simulated Laser Rangefinder
localization

We compared our approach using FSPF CGR localization
to the following three other CGR based laser rangefinder
localization algorithms where the data from the Kinect sensor
was used to simulate laser rangefinder scans:

1) Extracting a single raster line from the Kinect depth
image, reconstructing the corresponding 3D points, and

then down-projecting into 2D to generate the simulated
laser rangefinder scans. We call this approach the
Kinect-Raster (KR) approach.

2) Randomly sampling locations in the Kinect depth im-
age, and using the corresponding 3D points to simulate
the laser rangefinder scan. We call this approach the
Kinect-Sampling (KS) approach.

3) Reconstructing the full 3D point cloud from the entire
Kinect depth image, and using all these points to
generate the simulated laser rangefinder scan. We call
this approach the Kinect-Complete (KC) approach.

For estimating the error in localization using the Kinect,
we used the localization estimates produced by the laser
rangefinder CGR localization algorithm for reference. In the
KR, KS and KC approaches, the simulated laser rangefinder
scan had a simulated angular range of 180◦ and an angular
resolution of 0.35◦, although only part of this scan was
populated with useful information due to the limited angular
field of view of the Kinect. The number of points sampled
in the KS approach was limited to 2000 points, the same as
the number of plane filtered points generated in the FSPF
approach.

We recorded a log with odometry and data from the Kinect
sensor and the laser rangefinder while traversing a path
consisting of corridors as well as open areas with unmapped
obstacles. There was significant human traffic in the envi-
ronment, with some humans deliberately blocking the path
of the robot. This log was replayed offline for the different
localization approaches, running 100 times per approach,
with randomly added 20% noise to the odometry data. Fig. 6
shows the combined traces of the localization estimates for
all the succesful trials of each of the approaches. A trial was
said to be “succesful” if the error in localization was less
than 1m at every timestep of the trial.

Fig. 8 shows a cumulative histogram of the error in local-
ization using the different approaches. The FSPF approach
has significantly less error than the other three approaches.
Fig. 7 shows the cumulative failure rate as a function of the
elapsed run time. The FSPF approach has a 2% failure rate
at the end of all the trials, wehereas all the other approaches
start failing after around 20s into the trials. The KR, KS,
and KC approaches have total failure rates of 82%, 62% and
61% respectively. The abrupt increase in failures around the
20s mark corresponds to the time when the robot encounters
unmapped objects in the form of humans, tables and chairs
in an open area.

To compare the execution times of the different ap-
proaches, we kept track of the time taken to process all the
Kinect depth image observations, and calculated the ratio
of these execution times to the total duration of the trials.
These values are thus indicative of the mean CPU processing
load while running the algorithms online on the robot in real
time. The values for the different algorithms were 0.01%,
3.6%, 56.6% and 16.3% respectively for the KR, KS, KC,
and FSPF approaches respectively. It should be noted that
since the KR, KS and KC approaches use simulated laser
rangefinder scans with a fixed (180) number of rays, while

x (m)

y
(m

)

10 15 20 25

25

30

35

40

45

50

55

Fig. 6. Combined traces of all successful trials of all approaches: green
(KR), red (KS), blue (KC) and black (FSPF). FSPF CGR localization is
seen to have the least variation across trials.

FSPF

KC

KS

KR

F
a
il

u
re

ra
te

(%
)

Time (s)

0 20 40 60 80 100
0

20

40

60

80

100

Fig. 7. Cumulative fractions of the failure rates as a function of elapsed
time for all four approaches

the FSPF algorithm uses as many plane filtered points as are
detected up to a maximum of nmax, which we set to 2000
for the experiments.

B. Long Run Trials

To test the robustness of the depth-camera based FSPF
localization and navigation solution, we set a series of
random waypoints for the robot to navigate to, spread across
the map. The total length of the path was just over 4km.
Over the duration of the experiment, only the Kinect sensor
was used for localization and obstacle avoidance. The robot
successfully navigated to all waypoints, but localization had
to be reset at three locations, which were in open areas of
the map with unmapped obstacles where Kinect sensor could
not observe any walls for a while. Fig. 9 shows the trace of

FSPF

KC

KS

KR

C
u
m

u
la

ti
v
e

fr
a
c
ti

o
n

Error (m)

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

Fig. 8. Cumulative histogram of errors in localization of the different
approaches

the robot’s location over the course of the experiment. We
continue to use the FSPF localization and obstacle avoidance
algorithms during daily deployments of our robot.

VII. CONCLUSION AND FUTURE WORK

In this paper, we introduced an algorithm for efficient
depth camera based localization and navigation for indoor
mobile robots. We introduced the Fast Sampling Plane
Filtering algorithm to filter depth images into point clouds
corresponding to local planes. We subsequently contributed
an observation model that matches the plane filtered points to
lines in the existing 2D maps for localization. Both the plane
filtered, as well as the outlier point clouds are further used
for obstacle avoidance. We experimentally showed FSPF
localization to be more accurate as well as more robust
compared to localization using Kinect based simulated laser
rangefinder readings. We further demonstrated a long run
trial of the robot autonomously operating for over 4km using
the depth camera alone.

For use on other platforms like UAVs, scaling up the state
space to full 6 degrees of freedom is another possible avenue
of future work.

REFERENCES

[1] N.J. Mitra and A. Nguyen. Estimating surface normals in noisy point
cloud data. In Proceedings of the nineteenth annual symposium on
Computational geometry, pages 322–328. ACM, 2003.

[2] R. Schnabel, R. Wahl, and R. Klein. Efficient RANSAC for Point-
Cloud Shape Detection. In Computer Graphics Forum, volume 26,
pages 214–226. Wiley Online Library, 2007.

[3] J. Poppinga, N. Vaskevicius, A. Birk, and K. Pathak. Fast plane
detection and polygonalization in noisy 3D range images. In Intel-
ligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International
Conference on, pages 3378–3383. IEEE, 2008.

[4] M.A. Fischler and R.C. Bolles. Random sample consensus: A
paradigm for model fitting with applications to image analysis and
automated cartography. Communications of the ACM, 24(6):381–395.

[5] H. Durrant-Whyte and T. Bailey. Simultaneous localization and
mapping: part i. Robotics & Automation Magazine, IEEE, 13(2):99–
110, 2006.

[6] D. Hähnel, W. Burgard, and S. Thrun. Learning compact 3D models
of indoor and outdoor environments with a mobile robot. Robotics
and Autonomous Systems, 44(1):15–27, 2003.

20m

Fig. 9. Trace of robot location for the long run trial. The locations where
localization had to be reset are marked with crosses.

[7] A. Nuchter, K. Lingemann, J. Hertzberg, and H. Surmann. 6d SLAM
with approximate data association. In Advanced Robotics, 2005.
ICAR’05. Proceedings., 12th International Conference on, pages 242–
249. IEEE, 2005.

[8] A. Nüchter, K. Lingemann, J. Hertzberg, and H. Surmann. 6D SLAM
- 3D mapping outdoor environments. Journal of Field Robotics, 24(8-
9):699–722, 2007.

[9] J. Weingarten and R. Siegwart. 3D SLAM using planar segments. In
Intelligent Robots and Systems, 2006 IEEE/RSJ International Confer-
ence on, pages 3062–3067. IEEE, 2006.

[10] P. Kohlhepp, P. Pozzo, M. Walther, and R. Dillmann. Sequential 3D-
SLAM for mobile action planning. In Intelligent Robots and Systems,
2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ International Con-
ference on, volume 1, pages 722–729. IEEE, 2004.

[11] K. Pathak, A. Birk, N. Vaskevicius, M. Pfingsthorn, S. Schwertfeger,
and J. Poppinga. Online three-dimensional SLAM by registration of
large planar surface segments and closed-form pose-graph relaxation.
Journal of Field Robotics, 27(1):52–84, 2010.

[12] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox. RGB-D mapping:
Using depth cameras for dense 3d modeling of indoor environments.
In the 12th International Symposium on Experimental Robotics, 2010.

[13] A. Elfes. Using occupancy grids for mobile robot perception and
navigation. Computer, 22(6):46–57, 1989.

[14] L. Zhang and B.K. Ghosh. Line segment based map building and
localization using 2D laser rangefinder. In IEEE Int. Conf. on Robotics
and Automation, 2000.

[15] J. Biswas, B. Coltin, and M. Veloso. Corrective gradient refinement for
mobile robot localization. In Intelligent Robots and Systems (IROS),
2011 IEEE International Conference on. IEEE, 2011.

[16] D. Fox, W. Burgard, F. Dellaert, and S. Thrun. Monte carlo localiza-
tion: Efficient position estimation for mobile robots. In Proceedings
of the National Conference on Artificial Intelligence, pages 343–349.
JOHN WILEY & SONS LTD, 1999.

