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Abstract— Skid-steer drive systems are widely used in mobile
robot platforms. Such systems are subject to significant slippage
and skidding during normal operation due to their nature.
The ability to predict and compensate for such slippages in
the forward kinematics of these types of robots is of great
importance and provides the means for accurate control and
safe navigation. In this work, we propose a new kinematic model
capable of slip prediction for skid-steer wheeled mobile robots
(SSWMRs). The proposed model outperforms the state-of-the-
art in terms of both translational and rotational prediction error
on a dataset composed of more than 6km worth of trajectories
traversed by a skid-steer robot. We also publicly release our
dataset to serve as a benchmark for system identification and
model learning research for SSWMRs.

I. INTRODUCTION

Skid-steer is a type of drive system, in which the wheels
or tracks on each side of the vehicle are driven independently
and turning is realized by means of driving the left and right
wheels at different velocities. Such drive systems are popular
due to their simplicity (no explicit turning mechanism) and
maneuverability as they can turn in very small radii of
curvature.

The disadvantage of skid-steer mobile robots (SSMR), on
the other hand, is that slippage and skidding are inherent
to these types of robots, which in turn makes it challenging
to predict their motion accurately. In order to overcome this
problem, various kinematic and dynamic models have been
developed for this family of robots [1], [2], [3]. Historically,
the kinematic models have proven more popular due to their
simplicity and their robustness to inaccurate parameter esti-
mates. The available kinematic models for SSWMRs and in
general SSMRs either do not reason about slip [3] or if they
do, it is by means of empirical relations that cannot be inter-
preted physically and hence are not generalizable to different
platforms [4], [5]. In this work, we propose the friction-based
kinematic model, which is a physically interpretable model
that is capable of predicting the robot’s slippage through
reasoning about the wheel-ground interaction model. We also
introduce and publicly release a comprehensive dataset for
system identification research on SSWMRs which consists of
more than 6km worth of trajectories traversed by a Clearpath
Jackal robot on three different types of terrain. In summary,
our contributions are as follows:

• A physically interpretable kinematic model for SS-
WMRs that predicts slippage due to the dynamics.
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• A benchmark dataset of more than 6km worth of tra-
jectories, well-suited for studying the kinematics and
dynamics of SSWMRs.

• A survey and comparison of previous work on kinematic
models for skid-steer mobile robots.

Our results show that the friction-based kinematic
model can successfully capture the dynamics of the robot
to predict slippage, and hence provides more accurate pre-
dictions of the robot’s motion when compared to the state-
of-the-art on a real-world dataset.

II. BACKGROUND AND RELATED WORK

Extended differential drive [3] is the most common and
the simplest kinematic model for SSMRs. It based on the
model used for differential drive systems. In this model the
relation between the wheel velocities and the robot velocity
is expressed asvx
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where ωl and ωr represent the angular velocity of the left
and right wheels, respectively. vx, vy and vφ denote the
longitudinal, lateral, and angular velocities of the robot,
respectively. r is the effective wheel radius and B is the
track width of the robot as shown in Fig. 1. χ is a terrain-
dependent parameter, called the ICR coefficient, where ICR
is the instantaneous center of rotation. χ has values in the
range [1,∞), where χ = 1 corresponds to the case when there
is no slippage and the kinematic model would be equivalent
to that of an ideal differential drive system.

While the extended differential drive model assumes zero
lateral velocity for the robot, i.e. vy = 0, and also considers
the robot to be symmetric, a full linear model [6] does not
neglect the terms related to vy and it allows for asymmetries
as well. This model is described asvx
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where A is a 3 × 2 matrix. Compared to the extended
differential drive model, this model has 4 more parameters
to be trained for. The idea behind this method of modeling
SSWMR kinematics is to capture some of the nonlinearities
of the system caused by slippage as well as asymmetries,
such as different tire pressures, by means of a general linear
model. Both the full linear and the extended differential drive
models are trained using linear regression methods.



A class of SSMR kinematic models are mainly based on
the radius of curvature of the robot’s motion. These ROC-
based kinematic models are derived experimentally and try
to model the observation that SSMRs turn at relatively lower
rates at small radii of curvature. Moosavian et al. [4] propose
an exponential relation between the amount of slippage and
the radius of curvature based on the experiments that they
conduct on a skid-steer tracked robot. Wang et al. [5] also
experiment on a SSWMR and deduce the relation between
the ICR coefficient χ and radius of curvature to be of the
form

χ = 1+
b1

1+b2|RICR|0.5
, (3)

where RICR denotes the radius of curvature. b1 and b2
are positive constant values that are terrain-dependent and
are learned by observing the behavior of the robot while
performing turning maneuvers at different radii of curvature.

At the wheel level, slip ratio s and slip angle α are defined
as

s = 1− Vwx

rω
and α = arctan(

Vwy

Vwx

) , (4)

where Vwx and Vwy are the longitudinal and lateral velocities
of the wheel center, respectively. r denotes the wheel radius
and ω is the wheel angular velocity. The relation between
slip values and contact forces are extensively studied in the
field of terramechanics and in the form of wheel-ground
contact models [7], [8], [9]. For instance, a piecewise linear
model states that the slip ratio s and slip angle α are linearly
proportional to the normalized longitudinal and lateral fric-
tion forces applied to the wheel up to a limit. Seegmiller et
al. [10] extend such linear wheel-level force-slip relation to
the body level and propose an enhanced kinematic model
that predicts slip. In their approach, robot’s velocity is first
predicted assuming zero slip, i.e. similar to (1) while χ = 1,
and then a residual linear and angular velocity is calculated
and added to the original predicted values:

~vlin,slip = (p1
flon

N
vx + p2vx)x̂+(p3

flat

N
vx)ŷ

vφ ,slip = p4
flat

N
vx + p5vx + p6vφ ,

where~vlin,slip and vφ ,slip are the residual values or body-level
linear and angular slip velocities, respectively. flon and flat
denote the longitudinal and lateral forces applied to the center
of gravity and consist of the centrifugal and gravitational
forces and N is the normal force. p1:6 are constants and the
parameters of the model. For more details on the meaning
behind each of the parameters, please refer to [10]. Our
work is similar to Seegmiller’s enhanced kinematic model
in that it builds upon the wheel-ground contact models
to predict slip; however, its advantage is twofold: first, it
is physically interpretable and based on the wheel-ground
interaction model at the wheel level, while the enhanced
kinematic model uses such friction models at the body level
and with no physical proof. Second, our approach is capable
of predicting slippage caused due to the dynamics of the
robot, while the enhanced kinematic model assumes constant

Fig. 1: Diagram of a skid-steer mobile robot performing a
turning maneuver.

velocity motion. In the next section, we will explain our
proposed method in detail.

III. FRICTION-BASED KINEMATIC MODEL

A kinematic model provides an estimate of the robot’s
velocity given the pose and velocity of its joints, e.g.
wheel velocities in the case of a wheeled mobile robot. We
introduce the friction-based kinematic model, an extended
kinematic model for SSWMRs that is capable of predicting
slip caused by the dynamics of the robot. This model requires
only one more input aside from the wheel velocities and that
is the wheel acceleration. The proposed approach leverages
the underlying knowledge of the wheel-ground contact model
to predict wheel slippage given only the commanded wheel
velocities and their derivatives.

Fig. 1 depicts a diagram of a skid steer robot performing a
turn and illustrates the tractive and resistance forces applied
to the robot. The point O′ on the diagram depicts the
instantaneous center of rotation of the robot (ICR) and xICR
is the longitudinal offset of the ICR from the geometrical
center of the robot. The local reference frame of the robot
is defined on its geometric center O, and the robot’s center
of gravity is denoted by CG. The illustrated forces that are
applied to the ith wheel include the rolling resistance force
Ri and the tractive force fi. Ri models the loss of energy
caused by the non-elastic deformations of the tire and the
ground and is exerted in the opposite direction of movement
along the longitudinal axis and is written as

Ri = µrNi , (5)
where µr is the coefficient of rolling resistance and Ni is the
normal force at the ith wheel. The tractive force fi is exerted
in the opposite direction of the slip and has the components
fxi and fyi that are related to the slip ratio s and slip angle α

given the wheel-ground contact model. In this work we use
a piecewise linear model and an exponential model for the



longitudinal and lateral contact forces, respectively [11].

fx = sgn(s)sgn(Vwx)min(|s|λN,µxN) and (6)

fy =−sgn(Vwy)µy(1− e−|α|/C)N , (7)

where fx and fy denote the tractive forces along the longitudi-
nal and lateral axes, respectively. N is the normal force at the
contact point, µx and µy are the coefficients of friction along
the longitudinal and lateral axes, and λ and C are constant
positive scalar parameters of the above friction models.

Given the commanded wheel velocities ut = [ωlt ,ωrt ]
T and

their derivatives u̇t = [ω̇lt , ω̇rt ]
T , we want to estimate the

actual velocity of the robot in its local reference frame at
time t denoted by Vt = [vxt ,vyt ,vφt ]

T . First, we will show the
relation between Vt and ut assuming we have the left and
right wheel slip ratios slt ,srt as well as the ICR longitudinal
offset xICRt for time t. Then we will explain how we can
estimate the slip ratios and the ICR offset by means of
estimating the forces applied to the robot at time t given
only the commanded velocities ut and their derivative u̇t .

We add the notion of wheel slippage, as defined in (4), to
the differential drive kinematic model, i.e. (1) with χ = 1,
and also take into account the effect of a non-zero ICR offset
xICR. Hence, the relation between the wheel velocities and
the robot velocity in the local reference frame is written asvxt

vyt

vφt
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Let θt = {slt ,srt ,xICRt} denote the slip values and the ICR
offset for time t. If we estimate θt , we can then plug it into (8)
to calculate the robot velocity given the wheel velocities.
Writing the dynamic equations of motion of a rigid body for
our robot yields a nonlinear system of equations F(θt)

F1(θt) =
i=4

∑
i=1

fxi −
i=3

∑
i=0

Ri−Max (9)

F2(θt) =
i=4

∑
i=1

fyi −May (10)

F3(θt) =
i=4

∑
i=1

τfi +
i=4

∑
i=1

τRi − Izaφ , (11)

where M is the mass of the robot, and Iz is its moment of
inertia around the CG. τfi and τRi denote, respectively, the
applied torque to the robot around the CG by the tractive
force fi = fxi x̂+ fyi ŷ and the rolling resistance force Ri at
the ith wheel. ax and ay are the linear acceleration of the
CG along the x and y axes of the local reference frame
respectively, and aφ is the angular acceleration of the robot.

We will now walk through the steps to write the system
of equations F(θt) in terms of the unknown variables θt =
{slt ,srt ,xICRt} and the inputs ut and u̇t . First, we write ax
and ay in terms of the velocity of CG, vCG = vCGx x̂+vCGy ŷ,

and its derivative, v̇CG.

ax = v̇CGx +
||vCG||2 sin(γ)

RICR

ay = v̇CGy +
||vCG||2 cos(γ)

RICR
,

where γ (see Fig. 1), and vCG are written in terms of
[vxt ,vyt ,vφt ]

T , which in turn are written in terms of θt and ut
as shown in (8):

vCGx = vx− yCGvφ

vCGy = vy + xCGvφ

γ = arctan(
(xICR− xCG)vφ

vx
) .

Next, v̇CGx , v̇CGy , and aφ are substituted with the commanded
acceleration values v̇cmdx , v̇cmdy , and v̇cmdφ

, defined as

v̇cmdx = (ω̇rt + ω̇lt )r/2
v̇cmdy = 0

v̇cmdφ
= (ω̇rt − ω̇lt )r/B

where ω̇rt and ω̇lt are the rate of change of the commanded
velocities to the right and left wheels, respectively.

It should be noted that replacing the actual accelera-
tion values with the corresponding commanded values is
a simplifying assumption that allows us to reach a rough
estimate of the slippage caused by the dynamics of the robot.
While in reality the robot might not reach the commanded
acceleration due to slippage and the motor dynamics, this
simplifying assumption could be thought of as a zero-order
approximation of the robot acceleration. It should also be
noted that we are assuming the commanded velocities to
comply with the acceleration limits of the robot, which is
a reasonable assumption as motion planners often take into
account the hardware limits of the robot.

As a result, ax, ay, and aφ are written in terms of θt , ut ,
and u̇t . fxi and fyi are also written in terms of θt and ut
via (6) and (7). Thus, (9), (10), and (11) can be written in
terms of θt , ut , and u̇t . At each time step t, we have ut and
u̇t as inputs and we solve the nonlinear system of equations
F(θ) = 0 for θ via trust-region optimization such that

θ = argmin
θ ′

F(θ ′)T F(θ ′) . (12)

Then we plug θ into (8) which in turn yields the predicted
velocity of the robot Vt .

The parameters of the friction-based kinematic model , i.e.
{µr,µx,µy,λ ,C} are trained through nonlinear least squares
optimization such that the error in predicted velocity of the
robot is minimized over the training dataset.

The friction-based kinematic model lies at the region
between kinematic models and dynamic models. It is similar
to dynamic models in that it reasons about the forces applied
to the robot; however, it does not use the estimated forces to
calculate and integrate over the acceleration values. Instead,
it only uses the estimated forces to predict slip given the
wheel-ground interaction models. We classify our method as
a kinematic model because of its inputs and outputs at the



TABLE I: DATASET STATISTICS

Category Terrain
Type Name Duration

(s)
Traversed
Distance

(m)

Absolute
Rotation

(deg) ×103

Lin. Vel. Ang. Vel. Wheel Slip Vel.
Mean
(m/s)

Std.
(m/s)

Mean
(deg/s)

Std.
(deg/s)

Mean
(m/s)

Std.
(m/s)

Training
Tile Train1 384 463.2 31.1 1.30 0.48 34.3 48.6 0.15 0.12

Asphalt Train2 355 417.9 24.1 1.31 0.44 32.7 40.1 0.18 0.12
Grass Train3 977 764.1 64.8 0.87 0.25 33.3 38.9 0.13 0.06

Constant Velocity
Tile CV1 2059 910.3 117.6 0.48 0.48 29.8 29.2 0.11 0.10

Asphalt CV2 1083 459.4 72.0 0.47 0.45 31.5 17.2 0.12 0.08
Grass CV3 2127 771.1 133.8 0.40 0.41 31.19 24.9 0.12 0.08

Long Distance
Tile LD1 978 686.0 22.5 0.84 0.61 8.0 14.0 0.08 0.10

Asphalt LD2 906 1070.8 17.9 1.33 0.48 9.7 14.4 0.07 0.08
Grass LD3 685 561.5 13.2 0.88 0.26 12.8 16.5 0.08 0.05

high level regardless of the underlying reasoning about the
dynamics of the robot.

IV. DATASET

Data Collection Setup. We use the Clearpath Jackal,
which is a 16kg mobile robot with a skid-steer drive sys-
tem used mainly as a research platform. The Jackal has
a top speed of 2m/s and has two motors, each of which
controls the two wheels on each side of the robot. For all
experiments, the tire pressure is adjusted to the nominal
value of 20psi. A pair of Point Grey Blackfly cameras
are used for localization using stereo visual odometry at
30Hz. Fig. 2 shows the experiment platform setup. During
the experiments, the robot is driven and the camera feed,
commanded velocities (45Hz), IMU readings (75Hz), and
wheel odometry (20Hz) are logged. The logged data is then
used for generating the ground truth trajectory traversed by
the robot offline and using ORB-SLAM [12]. For all datasets,
the above mentioned logged data as well as the ground truth
are provided. The data is collected in different datasets based
on the velocity and acceleration profile of the trajectories.
In the following , we describe each of these categories and
provide their statistics, which are summarized in Table I. The
dataset is available at https://amrl.cs.umass.edu/
dataset/skid_steer.

Training Dataset. The training dataset consists of sessions
of the robot being driven using a joystick on three different
surface types. The training dataset has a large diversity in the
trajectories traversed by the robot in terms of both velocity
and acceleration, i.e. it includes both trajectories of the robot
performing wide turns at low velocities as well as instances
of the robot being driven in sharp turns aggressively and with
high acceleration.

Constant Velocity Dataset. This dataset consists of seg-
ments of the robot executing constant velocity turning tra-
jectories in open loop on tile, asphalt, and grass surfaces.
In each segment the robot is commanded a constant linear
and angular velocity and this is repeated for different turning
radii. The purpose of this dataset is to analyze the kinematics
of the robot and the slippage while there are no dynamics
involved.

Long Distance Traversal Dataset. The long distance
traversal dataset consists of three uninterrupted sessions of

the robot traversing a long path on tile, asphalt, and grass.
This dataset includes more than 2.3km traversed by the robot
in total. The purpose of this dataset is to have a benchmark
for normal operation of the robot in real-world scenarios. For
this dataset the robot is driven by a human operator using a
joystick.

V. EXPERIMENTAL RESULTS

We implemented the friction-based kinematic model as
well as the kinematic models discussed in section II, includ-
ing the extended differential drive, the full linear model, the
ROC-based model [5], and the enhanced kinematic model.
Different instances of each model were trained for different
types of terrain. We then tested the trained models on the
constant velocity and long distance datasets with the same
type of terrain. The models are evaluated based on their
ability to predict the pose of the robot over a horizon h.
At each time step t, given the current state of the robot xt =
[xt ,yt ,φt ], the sequence of future wheel velocity commands
ut:t+h, and future wheel acceleration commands u̇t:t+h, we
calculate the predicted pose of the robot xt+hpred and the
prediction error errt(h) for the prediction horizon h as

xt+hpred = xt +
∫ t+h

t
f (xτ ,uτ , u̇τ)dτ

errt(h) = xt+h−xt+hpred ,

where f (xτ ,uτ , u̇τ) denotes the kinematic model of the robot
that provides a prediction of its velocity ẋτpred at time τ . xt+h

Fig. 2: Clearpath Jackal, the skid-steer platform used for the
experiments.

https://amrl.cs.umass.edu/dataset/skid_steer
https://amrl.cs.umass.edu/dataset/skid_steer
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(b) Long-Distance-Traversal dataset.

Fig. 3: Translational prediction error for a 6-second pre-
diction horizon for different kinematic models on different
datasets.

is the ground truth pose of the robot at time t +h which is
provided by stereo visual odometry.

Using visual odometry makes it possible to conduct
experiments on long distance trajectories and on different
types of terrain in a cost effective manner. Marker-based
motion tracking systems [13] are only applicable to small
scale experiments in lab settings. GPS provides localization
only outdoors and with an accuracy of a couple of meters.
RTK GPS systems [14] provide localization with accuracy
of a few centimeters in the vicinity of a base station;
however, such systems are very expensive and they do not
provide any information about the orientation of the robot.
In order to assure high accuracy localization, we run visual
odometry offline and extract large numbers of image features.
Through a set of experiments, we have measured the relative
translational error of our localization setup to have a mean
value of 0.4% and a standard deviation of 0.3%. We have
also recorded a 0.2% mean and 0.2% standard deviation for
the relative rotational error. During these experiments, the
robot was driven starting at a marked point and returned
back to the same point after more than 20s of driving. The
difference of the initial and final pose of the robot estimated
by the localization system was calculated as the localization
error. Over 40 trials were recorded at the same locations as
the actual dataset and the robot was driven at its full speed
range.

Fig. 3a and 3b illustrate the root mean squared relative
error (RMSRE) values of the translational prediction error
of different kinematic models over a 6-second prediction
horizon on the constant-velocity and long-distance-traversal
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(b) Long-Distance-Traversal dataset.

Fig. 4: Rotational prediction error for a 6-second prediction
horizon for different kinematic models on different datasets.

datasets, respectively. Fig. 4a and 4b show the rotational
prediction error for the same kinematic models and datasets.
It should be noted that the figures show the relative error
values that are normalized with respect to the robot’s actual
displacement and absolute rotation values over the prediction
horizon. As it can be seen in the figures, the friction-based
kinematic model performs significantly better than all other
models in terms of both translational and rotational error on
the long distance traversal dataset and it performs compara-
ble to the other models on the constant velocity dataset. The
result is expected since the friction-based kinematic model’s
advantage over other kinematic models stands out when the
robot has accelerated motion, in which case the model’s
reasoning about the wheel-ground interaction model and the
robot’s dynamics allows it to capture nonlinearities in the
motion model that the other kinematic models cannot.

In order to further investigate the motion model of the
robot and the role of its dynamics in its behavior’s devi-
ation from a linear kinematic model, we have visualized
the measured angular velocity of the robot given pairs of
measured wheel velocities for the Test1 dataset in Fig. 5.
The figure depicts a side view of the plane defined by the
trained full linear kinematic model, alωl + arωr = vφ , that
is overlaid with data points of observed angular velocities.
The data points are colored based on the measured angular
acceleration of the robot, such that the darker the color,
the lower the angular acceleration. As it can be seen, the
deviation of the observations from the values predicted by
the linear model (the plane), is not random. The prediction
error δvφ = vφmeasured − vφpred and the acceleration value are
negatively correlated, such that with increase in angular



-1.5

-1

-0.5

0

0.5

1

1.5
a
n

g
u

la
r 

v
e
l.
 (

ra
d

/s
)

2020

l
 (rad/s)

r
 (rad/s)

15 15

-5

0

5

rad/ s
2

Fig. 5: Measured angular velocities of the robot for different
wheel velocities and different angular acceleration values.
Increase in angular acceleration leads to decrease in observed
angular velocity for the same pair of wheel velocities

acceleration, the observed angular velocity decreases for the
same pair of wheel velocities {ωl ,ωr}. While this observa-
tion matches our intuition of the dynamics of the robot, it
also signifies the fact that the dynamics of an SSWMR play a
remarkable role in describing the motion of the robot, which
is the motivation behind our proposed kinematic model.
The friction-based kinematic model goes beyond the normal
definition of a kinematic model and predicts the robot’s
slipping by means of taking the commanded acceleration
values as an approximation of the robot’s actual acceleration.
Fig. 6 visualizes the predicted robot angular velocities by
the friction-based kinematic model given the commanded
wheel velocities at different commanded angular acceleration
values. The three surfaces in the figure, represent the friction-
based kinematic model’s predictions of the robot’s angular
velocity for three different values of commanded angular
acceleration v̇cmdφ

= {−8rad/s2,0rad/s2,8rad/s2} and zero
commanded linear acceleration. The surface moves toward
negative angular velocity direction with increase in the
commanded angular acceleration, which is in line with our
observations of the robot’s actual behavior as shown in Fig. 5.

Fig. 7 depicts multiple snapshots of actual robot trajecto-

Fig. 6: Friction-based model’s prediction of angular velocity
for different wheel velocities and different angular accelera-
tion values.

Fig. 7: Samples of actual robot trajectories and the predicted
trajectories by different kinematic models for a 6-second
prediction horizon.

ries from both constant velocity and long distance traversal
datasets. The ground truth measurement as well as the pre-
dicted trajectories by different kinematic models are depicted
for a 6-second prediction horizon. As it can be seen the
friction-based kinematic model predicts the robot’s slippage,
and hence the actual trajectory, more accurately than other
kinematic models. It is worth noting that having an accurate
forward model that can predict the pose of the robot over
a long horizon in the future is of paramount importance for
safe navigation and motion planning and has applications in
model predictive planning algorithms [15], where an accurate
motion model would significantly improve the effectiveness
of such approaches.

VI. CONCLUSION

In this paper, we introduced the friction-based kinematic
model for SSWMRs, which is physically interpretable and
capable of predicting slippage caused by the dynamics of the
robot. We compared our model against the state-of-the-art via
testing on real-world data and it showed better performance
in predicting both the position and orientation of the robot.
We have also publicly released our dataset, consisting of
more than 6km worth of trajectories traversed by an SSWMR
on three different types of terrain. As future work, we would
like to integrate the friction-based kinematic model into the
controls of SSWMRs and develop a closed loop control
system based on our kinematic model.
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